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Abstract

The leukodystrophies are a heterogeneous, often progressive group of disorders manifesting a 

wide range of symptoms and complications. Most of these disorders have historically had no 

etiologic or disease specific therapeutic approaches. Recently, a greater understanding of the 

pathologic mechanisms associated with leukodystrophies has allowed clinicians and researchers to 

prioritize treatment strategies and advance research in therapies for specific disorders, some of 

which are on the verge of pilot or phase I/II clinical trials. This shifts the care of leukodystrophy 

patients from the management of the complex array of symptoms and sequelae alone to targeted 

therapeutics. The unmet needs of leukodystrophy patients still remain an overwhelming burden. 

While the overwhelming consensus is that these disorders collectively are symptomatically 

treatable, leukodystrophy patients are in need of advanced therapies and if possible, a cure.
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1. Introduction

A greater understanding of the pathologic mechanisms associated with leukodystrophies has 

allowed clinicians and researchers to prioritize treatment strategies and advance research 

therapies in specific disorders. This shifts the care of leukodystrophy patients from the 

management of the complex array of symptoms and sequelae alone to targeted therapeutics. 

Herein we address the current state of existing and emerging therapies, as well as the 
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importance of systematic research in changing the prognostic implications of these 

disorders.

Namely, although almost all patients with leukodystrophies have certain core features that 

require symptomatic management, several leukodystrophies have specific complications that 

require special attention (Table 1). Although our list is not exhaustive we have sought to 

convey the breadth of disease-specific nuance and multisystem involvement that can be seen 

among affected individuals. We have taken care to address specific therapeutic approaches 

relevant to each disorder [1–3]. While it is hoped that additional disorders will have targeted 

therapies in the near future, at this point it is particularly important not to miss the diagnosis 

of conditions such as X-linked Adrenoleukodystrophy (X-ALD), Cerebrotendinous 

Xanthomatosis (CTX), Metachromatic Leukodystrophy (MLD) and Krabbe because there is 

some evidence that early intervention in carefully selected cases may improve outcomes. 

Finally, there are a variety of promising, disease specific therapies currently in human trials 

for several leukodystrophies, including X-ALD, MLD, Krabbe disease, Peroxisomal 

Biogenesis disorders, Pelizaeus-Merzbacher disease (PMD), Adult Polyglucosan Body 

Disease (APBD), and Aicardi-Goutières Syndrome (AGS). These modalities include 

traditional pharmaceuticals as well as the manipulation of stem cells, genes, and enzymes. 

We have made an effort to distinguish between the strategies that currently have some 

evidence of efficacy and those that are at this point purely experimental (Table 2); we must 

acknowledge that this judgment will change as new evidence emerges. Disorders with 

existing symptomatic or mechanistic approaches are addressed here in an alphabetical 

fashion.

2. X-linked Adrenoleukodystrophy (X-ALD)

X-ALD is one of the most common leukodystrophies and disease-specific management 

guidelines have recently been published [4]. X-ALD is caused by mutations in ABCD1, 

encoding the adrenoleukodystrophy protein (ALDP). This is an X-linked dominant disorder 

that results from a deficient very long-chain fatty acid transport protein on the surface of the 

peroxisome. Four primary phenotypes (asymptomatic, adrenal insufficiency, cerebral ALD, 

and adrenomyeloneuropathy) have been identified in X-ALD patients, which may overlap 

during the lifespan. All patients begin life asymptomatic and, in rare cases, may remain 

asymptomatic into the fourth decade in the case of men or the sixth decade in the case of 

women.

2.1 ALD: Recognition and Approach to Unique Clinical Features

X-ALD has several, potentially overlapping phenotypes. The phenotypes include (1) 

asymptomatic status, (2) adrenal insufficiency, (3) inflammatory cerebral demyelination 

often called cerebral X-ALD, and (4) progressive spastic paraparesis and sphincter 

dysfunction often called adrenomyeloneuropathy. Each phenotype, in effect, describes a 

specific subset of symptoms with a distinct management strategy. All X-ALD gene carriers 

are asymptomatic for at least the first few years of life, after which males should undergo 

regular serologic surveillance for adrenal insufficiency and regular radiologic surveillance 

for cerebral demyelination; both phenotypes are life-threatening but treatable if identified in 

a timely fashion. Males with an X-ALD mutation should be screened via cortisol stimulation 
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testing every 6–9 months for adrenal insufficiency. Women are typically spared adrenal 

insufficiency and cerebral demyelination. Patients who show signs of adrenal insufficiency 

should be started on corticosteroids and followed by an endocrinologist. All men and most 

women with an X-ALD mutation will eventually develop symptoms of spastic paraparesis 

and associated sphincter dysfunction during adulthood. Rehabilitation therapy and 

symptomatic treatment for spasticity, pain, and maintenance of ambulation can greatly 

enhance quality of life and prevent or mitigate early disability. Attentive urologic and 

gastroenterologic care may similarly help maintain comfort and independence and reduce 

the incidence of urinary tract infections.

In patients with cerebral X-ALD, Hematopoietic Stem Cell Transplantation (HSCT) has 

been shown to improve survival and stabilize or improve cognitive abilities, but only if 

treatment is initiated during the early stages of cerebral demyelination when the lesion is 

still relatively small [5–7], highlighting the importance of early diagnosis. Surveillance MRI 

studies are important for early identification of brain lesions, before clinical symptoms 

appear and in time for HSCT. Specific clinical and radiologic criteria have been established 

for triaging cerebral X-ALD patients who are candidates for HSCT and have been described 

in detail using established clinical and radiologic criteria that have been established for 

triaging candidates for HSCT [5]. Factors associated with favorable treatment outcomes 

include low pre-transplant Loes radiographic severity score [8], limited degree of neurologic 

disability and high neuropsychometric measures after HSCT intervention [5, 7]. The 

therapeutic benefits of HSCT in X-ALD patients are believed to arise, at least in part, 

through the replacement of the patient’s genetically deficient brain microglia with 

genetically competent microglial progenitor cells arising from the donor blood [9].

Newborn screening for X-ALD is being implemented in a growing number of US states and 

is performed through the measurement of 26:0-lyso-PC levels and the ratios of 26:0-lyso-PC 

to 20L0-lyso-PC [10]. X-ALD males, aged 3–12 years identified through newborn screening 

or as relatives of a proband, should undergo gadolinium-enhanced magnetic resonance 

imaging (MRI) of the brain every 6 months to screen for early signs of cerebral 

demyelination in order to establish the need for early intervention. Annual MRI studies 

should be considered for adolescent boys and adults, who are at slightly lower risk for 

developing the cerebral ALD phenotype, Many practitioners continue to screen adult males 

yearly, though the incidence of development of cerebral X-ALD in adults is less well 

known. Among X-ALD men over 50 years and X-ALD women (heterozygotes) of any age, 

the onset of the cerebral and/or adrenal insufficiency phenotypes are uncommon, suggesting 

that routine surveillance screening for these individuals is probably unnecessary.

2.2 ALD: Emerging Therapies & Clinical Trials

In boys who have not yet developed cerebral ALD, daily consumption of Lorenzo’s Oil, a 

mixture of oleic and erucic acid, in combination with dietary restriction of very long chain 

fatty acids, may help mitigate the risk of developing cerebral demyelination [11]. The oil 

acts as a competitive inhibitor of endogenous very long chain fatty acid production [12]. Use 

of Lorenzo’s Oil appears to offer a modest reduction in the risk of developing cerebral X-

ALD, although it has no impact on the progression of cerebral X-ALD once the disease 
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process has begun [11]. Its consumption carries health risks [13] and it’s availability in the 

US is currently restricted to X-ALD boys aged 3–10 under an expanded access trial (Clinical 

Trials.gov, NCT02233257).

A pilot phase trial using sobetirome, a thyromimetic, synthetic structural analogs of thyroid 

hormone that mimic tissue-restricted thyroid hormone actions [14] is in preparatory phases 

(ClinicalTrials.gov, NCT01787578) based on the molecule’s ability to upregulate ABCD2, 

whose genetic expression can help metabolize very long chain fatty acids [15]. Sobetirome 

showed efficacy and safety, indicating that it has been well tolerated at all doses studied.

Lentiviral-based gene therapy has shown early promise in X-ALD [16]. This technology 

involves the ex-vivo transduction of autologous HSCs with a human immunodeficiency 

virus type 1-derived vector. This retroviral vector targets microglial precursors, with no 

evidence of insertional mutagenesis, which can trigger leukemia and has the advantage of 

theoretically eliminating the risk of graft-versus host disease. Lentiviral ALD gene therapy 

has shown encouraging results in ALD patients where its use has resulted in polyclonal 

hematopoietic repopulation, stable transgene expression, and stabilization or reversal of 

demyelination [9] and is entering phase II/III clinical trials (ClinicalTrials.gov identifier: 

NCT01896102).

3. Adult Polyglucosan Body Disease (APBD)

APBD is one of relatively few adult-onset leukodystrophies. Symptoms usually appear in 

the 5th or 6th decade with progressive spastic paraparesis, sphincter dysfunction, and 

ascending peripheral neuropathy. The affected gene (GBE1) encodes a glycogen branching 

enzyme whose dysfunction leads to the accumulation of polyglucosan bodies in the central 

and peripheral nerves. Studies into the effectiveness of anaplerotic therapy in APBD are 

currently ongoing (ClinicalTrials.gov Identifier: NCT00947960). The implementation of 

triheptanonin, a 7-carbon triglyceride, is suspected to be an efficient substrate to the citric 

acid cycle to correct the resultant energy deficit [17]. This may be an important therapy 

which may prove beneficial in slowing the clinical course of these patients.

4. Aicardi–Goutières syndrome (AGS)

AGS is a devastating neurologic disorder that primarily affects patients in the first year of 

life. AGS is characterized, in part, by a calcifying microangiopathy and elevated cerebral 

spinal fluid (CSF) α-interferon (IFNα) levels that usually presents in the first year of life. 

The seven AGS related genes (TREX1, RNASEH2A/B/C, SAMHD1, ADAR1 and IFIH1) are 

associated with genome surveillance, integrity and damage repair. Pathogenic mutations 

appear to result in the aberrant accumulation of RNA: DNA (ribonucleic acid: 

deoxyribonucleic acid) hybrids and other immunogenic nucleic acid structures within the 

cell [18–21]. The discovery of elevated IFNα in CSF has prompted further research into the 

autoimmune complications associated with AGS.
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4.1 AGS: Recognition and Approach to Unique Clinical Features

AGS patients share many common features with those affected by systemic lupus 

erythematosus (SLE), and rare cases of SLE have been found to be associated with TREX1 

mutations. All AGS patients should be monitored and symptomatically treated for skin 

inflammation (e.g. chilblains), arthritis, inflammatory bowel disease, hematologic 

complications, and cardiomyopathy [22]. AGS patients with a SAMHD1 mutation are at risk 

high risk of developing potentially life-threatening complications from large vessel 

vasculitis; consideration should be given for both radiologic and serologic screening in these 

individuals. Many AGS patients exhibit a range of endocrine dysfunction (e.g. 

hypothyroidism) that may benefit from periodic screening and supplementation when 

indicated. Systemic immunosuppressive regimens (e.g. corticosteroids) have been employed 

as part of symptom management for AGS, but have not yet demonstrated definite 

improvement in neurologic symptoms [23].

4.2 AGS: Emerging therapies have not yet entered clinical trials

Experiments in the murine model of AGS have demonstrated over-accumulation of 

endogenous retro elements [24, 25] while SAM domain and HD domain-containing protein 

1 (SAMHD1) have been shown to be a dominant suppressor of Long Interspersed Element 1 

(LINE-1). AGS-related mutations compromise the potency of SAMHD1 against LINE-1 

retrotransposition [26]. Within the murine model of AGS, the use of reverse transcriptase 

inhibitors presumably targeting production of endogenous retroelements has been studied 

with promising results [27]. Significant work is still necessary to better understand the 

mechanisms of this disorder but efforts are underway to test the use of antiretroviral therapy 

in AGS patients.

5. Alexander disease (AxD)

AxD results from a mutation in the gene encoding glial fibrillary acidic protein (GFAP). In 

classical (i.e. Type I) AxD, symptoms of macrocephaly, seizure, and spasticity appear in 

infancy. Substantial accumulation of the mutated GFAP may also result in obstruction of 

CSF pathways and hydrocephalus [28]. Routine monitoring for this complication 

Papilledema, headache, or changes in vision or behavior can aid in the diagnosis of this 

complication. Neurosurgical intervention should be considered on case-by-case basis.

Some individuals with GFAP mutations may present in adolescence or adulthood (i.e. Type 

II AxD). Unique symptoms may include bulbar dysfunction (e.g. dysphonia, palatal 

myoclonus), autonomic dysfunction, and sleep apnea [28]. Treatment of these latter two 

symptoms may help alleviate encephalopathy and enhance quality of life.

6. Canavan disease

Canavan disease is characterized by progressive spongiform degeneration of the brain 

caused by a deficiency of the aspartoacyclase, which is necessary for brain metabolism of N-

acetyl aspartic acid (NAA) [29]. Onset is typically in the first year of life and current 

treatment is supportive. In the first gene therapy trial in Canavan disease, intraventricular 

delivery of liposome-encapsulated plasmid DNA was able to produce a transient decrease in 
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NAA accumulation, and MRI scans suggested new myelination in one of the two patients 

[30]. However, results of a phase I/II clinical trial testing intraparenchymal gene delivery 

with a recombinant adeno-associated virus serotype 2 (AAV2) vector have been more 

promising. Treated children showed decreased brain NAA concentrations, MRI changes 

suggesting more normal myelination and stabilization of brain atrophy, and evidence for 

improved clinical status on long-term follow-up [31].

7. Cerebrotendinous Xanthomatosis (CTX)

CTX is an autosomal recessive inherited lipid storage disorder that results from a genetic 

mutation in CYP27A1. CTX results from a deficiency in 27-hydroxylase, a mitochondrial 

enzyme responsible for an early step in bile acid synthesis, and is uniquely characterized by 

high levels of serum cholestanol and bile acids that deposit in the brain, lens, and tendons. 

Clinical symptoms manifest in early childhood as cataracts and diarrhea. It is only later in 

life that patients show psychomotor decline, and the typical tendon xanthomas. Daily oral 

supplementation with 750mg of chenodeoxycholic acid, a bile salt, typically corrects the 

biochemical abnormalities and may reverse some clinical symptoms [32, 33]. Some 

experience suggests that earlier treatment initiation may correlate with better outcomes [34]. 

Oral statins are often included in the CTX treatment regimen, although their clinical benefit 

is unknown.

8. Hypomyelination with Brain Stem and Spinal cord abnormalities and leg 

spasticity (HBSL)

HBSL is the result of mutations in DARS, a cytoplasmic tRNA synthetase gene. HBSL 

patients present with a broad phenotypic spectrum characterized by focal cerebral white 

matter abnormalities and spinal cord signal abnormalities [35]. Interestingly partial 

responsiveness to steroids in a number of HBSL patients with subacute disease onset 

suggests that steroids may be a therapeutic avenue that should be further studied in this 

condition [35]. Certain tRNA synthetases have non-canonical functions in biological 

processes such as angiogenesis, regulation of gene transcription, and RNA splicing [36]. 

These non-canonical tRNA synthetase functions are conserved across the complete 

phylogeny of animals, and are now established as playing key roles in a number of 

pathophysiological processes [36]. DARS specifically, is one of nine cytoplasmic tRNA 

synthetases that make up the multi-synthetase complex (MSC) which facilitates gene-

specific translational silencing of inflammation-related mRNAs. While these mechanisms 

and functions must be studied further to elucidate why individuals appear responsive and 

what their clinical response is, it provides an interesting basis for compassionate care 

treatment in these patients.

9. Krabbe Disease

9.1 Krabbe: Recognition and Approach to Unique Clinical Features

Most individuals with Krabbe disease typically experience severe neurological disturbances. 

Krabbe Disease results from pathogenic mutations in the GALC gene which encodes the 

lysosomal enzyme galactosylceramidase. Most Krabbe-causing mutations result in severely 
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diminished function of the enzyme. The classical presentation of Krabbe occurs in infancy 

where affected individuals manifest spasticity and irritability. Less commonly, some GALC 

mutations appear to result in a less severe attenuation of enzyme function which may lead to 

a milder phenotype. Unfortunately, genotype-phenotype correlations in Krabbe disease are 

generally inconsistent which poses a significant hurdle for treatment selection and clinical 

trial design.

9.2 Krabbe: Emerging Therapies

Early studies suggest that in carefully selected cases (e.g. “presymptomatic” infants or older 

patients with low neurologic morbidity) HSCT may help attenuate the usually rapid 

neurologic deterioration [37–39]. The presymptomatic treatment paradigm constitutes the 

argument for newborn screening for Krabbe disease, which is currently available in a small 

number of US states. Among patients with later disease onset, HSCT may also prove 

beneficial, although the rarity of these phenotypes has limited its study [37, 39]. As in MLD, 

these treatment recommendations are tempered by a lack of long-term outcome data and 

poor genotype-phenotype correlations [40–42]. Clinical staging criteria have been proposed 

for Krabbe disease [43] and may be useful in evaluating patients for HSCT [44].

Missense mutations, occurring in >60% of Krabbe patients, are predicted to generate 

misfolded proteins [45]. Misfolded proteins can be prematurely degraded, aggregate within 

the cell, or trigger an unfolded protein response [46–48]. It is estimated that just 10% of 

normal galactosylceramidase (GALC) function is necessary to avoid the neurological 

symptoms associated with Krabbe disease [49]. Thus, an intervention that restores 10% of 

missense-causing GALC function would have the potential for impacting this disease. 

Pharmacological chaperones, synthetic low molecular weight molecules that can be 

administered orally with broad body-wide distribution (including the CNS), can rescue 

function of mutant proteins by directing them into a proper conformation or cellular 

location, or protecting them from degradation [50–52]. Pharmacological chaperones that 

improve the activity of misfolded GALC are currently being screened, with α-lobeline and 

3′,4′,7-trihydroxyisoflavone recently identified candidates [53, 54].

10. Metachromatic Leukodystrophy (MLD)

10.1 MLD: Recognition and Approach to Unique Clinical Features

MLD results from a pathogenic mutation in the gene encoding either arylsulfatase A or 

saposin B, either of which results in the accumulation of toxic metabolites (i.e. sulfatides) 

within the nervous system as well as some visceral organs. As with Krabbe disease, 

enzymatic activity levels tend to correlate with age of onset and severity of symptoms with 

age of onset ranging from infancy (most common) to adulthood (rare). Although motor 

symptoms dominate early life presentation of MLD, adults often manifest with increasingly 

severe psychiatric disturbances. The gallbladder accumulates particularly high levels of 

sulfatides which may result in potentially life-threatening, but treatable gall bladder 

pathologies (e.g. gallstones, papillomatosis, cholecystitis). In rare cases, identification of 

gallbladder dysfunction prior to the onset of neurologic symptoms could provide a theoretic 

window for early intervention to mitigate neurologic sequelae of MLD [55].
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10.2 MLD: Emerging Therapies

MLD patients have been treated with HSCT [39, 42, 56, 57], although its use has been 

widely debated due to phenotypic variability, transplant-refractory peripheral neuropathy, 

high treatment-related morbidity and mortality, and limited long-term outcome data. The 

most substantial disagreement centers on the use of HSCT among very young patients with 

early disease onset (i.e. late-infantile MLD); in addition to variable neurocognitive 

outcomes, these patients typically manifest transplant-refractory neuropathy which results in 

progressive flaccid paralysis [5]. Experts do agree, however, that symptomatic children with 

the late-infantile form of MLD are poor candidates for these therapies, as are individuals 

with later onset forms of the disease who have already accrued cognitive morbidity [5, 39, 

58, 59]. Bone marrow transplantation has been shown to halt demyelination in minimally 

symptomatic patients with juvenile or adult MLD [60]. Since the initial publication of 

transplant outcomes in MLD [5], the treatment regimens have improved and there are 

indications that morbidity rates have fallen. In addition, the use of umbilical cord blood 

decreases the time between diagnosis and transplantation, improving outcomes of minimally 

symptomatic patients with late-infantile and juvenile MLD. Outcomes vary according to 

clinical status, Loes score, peripheral nerve disease and neurologic examination, with the 

best results for those with minimally symptomatic juvenile disease [40, 61–63]. Treatment 

recommendations are based on the limited long-term longitudinal outcome data currently 

available, as is the case of allogeneic HSCT for Krabbe disease patients [40–42]. The 

decision to pursue transplant among patients with these disorders can be complex and as a 

result, must be evaluated on an individual basis by a specialized and experienced center, 

prepared to provide the most up to date information and support patients with complex 

neurologic and systemic manifestations.

As therapy with HSCT has resulted in variable outcomes, Enzyme Replacement Therapy 

(ERT) is being studied under clinical trial in Europe, South America and Australia. ERT 

replaces the deficient or missing enzyme with an active enzyme, which is a recombinant 

human protein produced by gene activation technology. Therapeutic efficacy of ERT is 

thought to depend on the enzyme dose, frequency, and the disease stage at which treatment 

is initiated. Prior studies using a regular repeated intravenous delivery of recombinant 

human arylsulfatase A (rhASA) failed to show efficiency in permeating the blood-brain 

barrier [64]. Current Phase I/II studies, using an intrathecal delivery mechanism and a 

different enzyme are underway although no formal data will be available until late 2015 

(ClinicalTrials.gov Identifier NCT01510028).

Lentiviral-based gene therapy for MLD have produced above-normal enzyme activity in the 

central nervous system and halted disease progression in the first three patients, who were 

presymptomatic when treated (ClinicalTrials.gov identifier: NCT01560182)[16]. Phase I/II 

post-therapy monitoring is underway with Phase II/III studies expected to start in 2015.

11. Pelizaeus-Merzbacher Disease (PMD)

PMD results from pathogenic mutations in a gene (PLP1) that encodes proteolipid protein 

which is one of the proteins responsible for stabilizing the myelin sheath. At the cellular 

level, oligodendrocytes, astrocytes, microglia, and neurons are affected through a number of 
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mechanisms [65]. Mutations lead to a hypomyelinating leukodystrophy characterized by 

early onset nystagmus, hypotonia, and cognitive impairment progressing to ataxia and 

spasticity. The more severe, connatal form typically manifests symptoms such as seizures 

and/or stridor within the first two weeks of life.

Human Central Nervous System Stem Cell (HuCNS-SC), transplant for patients with the 

connatal form of PMD has completed one-year Phase I safety studies and is under further 

assessment in long-term follow up studies at University of California, San Francisco (UCSF) 

in partnership with StemCells, Inc. Pre-clinical studies with HuCNS-SC showed that 

transplantation in hypomyelinated shiverer mice generated new oligodendrocytes that 

produced MRI confirmed myelin [66]. The Phase I trial at UCSF transplanted HuCNS-SC 

directly into subcortical white matter tracts of four children with connatal PMD. MRI 

studies showed evidence for qualitative changes on T1- and T2-weighted imaging and 

progressive increases in fractional anisotropy on diffusion tensor imaging (DTI) [67]. 

Moreover, such DTI signal changes persisted after stopping immunosuppressive therapies. 

The preliminary clinical outcomes of the study suggest safety of this intervention in patients 

with PMD. While efficacy studies for PMD are needed, this approach establishes a 

methodology for other leukodystrophies and leukoencephalopathies that may benefit from 

the application of HuCNS-SCs, or other CNS cell types (e.g., oligodendrocyte precursors), 

through transplantation into the brain [68].

12. Peroxisomal Biogenesis Disorders

Peroxisomal Biogenesis Disorders including Zellweger spectrum disorder (ZSD) are a 

heterogeneous autosomal recessive group of disorders caused by defects in at least 13 

known peroxisomal (PEX) genes that are required for peroxisome assembly [69]. These 

gene defects result in reduced peroxisome numbers, enlarged size of remaining peroxisomes 

and loss of enzyme import functions, resulting in multiple peroxisomal enzyme deficiencies 

and multisystem defects. In general, patients with PEX gene mutations that abrogate PEX 

protein function cause the most severe form of the disease, Zellweger syndrome. However 

the presence of at least one PEX gene missense mutation, results in residual protein 

functions and a less severe phenotype [70].

Patients with the most severe form of Zellweger syndrome patients are born with neuronal 

migration defects, and do not survive past 1–2 years of age. However, the majority of ZSD 

patients do not have neuronal migration defects and may have normal brain MRI imaging 

early on, but are at risk to develop a leukoencephalopathy over time. A common mutation 

present in at least 30% of these patients is PEX1-Gly843Asp, due to a founder effect in 

persons of European ancestry [71]. Studies of this allele show that it is a misfolded and 

degraded protein amenable to recovery at the cellular level [72]. Using a phenotype based 

assay with PEX1-Gly843Asp cell lines expressing a GFP-PTS1 reporter, several chaperone 

compounds were identified that recovered peroxisome enzyme import in a drug library 

screen [73]. A clinical trial was initiated, based on the nonspecific chemical chaperone, 

betaine (ClinicalTrials.gov Identifier: NCT01838941).
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13. RNA polymerase III disorders

Patients with Pol III-related leukodystrophies commonly, but not invariably, suffer from 

hypogonadotropic hypogonadism, which often presents as delayed puberty, but may include 

growth hormone failure and/or hypothyroidism. We recommend that Poll III patients be 

assessed and followed by an endocrinologist [74]. The decision of whether or not to treat the 

hormonal deficiency should be taken on an individual basis, weighing the risks of the 

disease versus the potential benefits of the treatment.

14. Other Unique Clinical Features Can Occur in Several Leukodystrophies

14.1 Episodic deterioration during acute stress or illness may occur in several disorders

Almost all leukodystrophies may manifest acute neurologic deterioration in periods of acute 

stress, often without full recovery to premorbid baseline, however in certain disorders this is 

a classic presentation. Patients with Vanishing White Matter Disease (VWM) may present 

following febrile illness, head trauma and severe fright.[75]. Some mitochondrial disorders 

may manifest white matter abnormalities and episodic decline. Step-wise decline may also 

occur following infection in Pol III-related leukodystrophies [74] or in AGS [22], and after 

head trauma in X-ALD [76]. Therapeutic strategies for these disorders include aggressive 

infection prevention and treatment measures including frequent hand-washing, annual 

vaccinations for influenza and pneumococcus, and liberal antibiotic use. In the case of 

mitochondrial disorders, avoiding metabolic catabolism (i.e. nutritional fasting physiology) 

during periods of stress may also be appropriate [77]. Finally, greater than usual attention to 

avoid mild traumatic brain injury may also be warranted.

14.2 Dental anomalies occur in several hypomyelinating disorders

Pol III-related leukodystrophies, Cockayne syndrome, and Oculodentodigital Dysplasia 

(ODD) are three hypomyelinating leukodystrophies typically manifesting dental anomalies. 

For patients with these three hypomyelinating leukodystrophies, dental care is of utmost 

importance and regular visits to the dentist are recommended. In the Peroxisome Biogenesis 

Disorders, absence of enamel on the secondary teeth is a recurrent finding [78]. However, 

regular dental care and hygiene is important for all leukodystrophy patients as cavities and 

abscesses may go unnoticed in routine medical care and can result in severe medical 

morbidity. Thus, regular dental visits are recommended for all leukodystrophy patients.

4. Conclusion

As an entity, the leukodystrophies are a complex, often progressive group of disorders that 

can manifest a wide range of symptoms and complications. A number of these disorders 

have severe complications that must be addressed in order to improve quality of life for 

these patients. The multisystem involvements that can be seen in these disorders provide 

challenges for clinicians and care must be designed to accommodate all of the associated 

symptoms.

With the absence of a cure for most leukodystrophies, the disorders that currently have 

specific therapies and/or active clinical trials are of great importance. In many instances, 
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prompt recognition and early treatment initiation favor a better therapeutic response. 

Increased attention to the signs and symptoms of these leukodystrophies and education to 

promote early diagnosis is essential.

More recently, clinicians and researchers have been able to advance research therapies in 

specific disorders. A number of these disorders, previously untreatable, are on the verge of 

pilot or phase I/II clinical trials. Next generation sequencing technologies have finally 

provided a way to fill gaps in diagnosis-solving cases where in the past more than half of 

patients never achieved an etiologic diagnosis, findings that are important in improving 

patient care and quality of life. Early epidemiologic research has quantified the health care 

burden of these disorders, which occur cumulatively as frequently as every 1/7000 births 

and result in significant morbidity and health care expenditures [79–81]. Finally, increased 

awareness of rare disorders better positions patient centered foundations and researchers to 

advocate for the leukodystrophy community.

The unmet needs of leukodystrophy patients still remain an overwhelming burden. While the 

consensus is that these disorders collectively are symptomatically treatable, leukodystrophy 

patients are in need of advanced therapies and if possible, a cure. Collaboration is the 

cornerstone of progress in the world of rare diseases. The growth of clinical research 

networks in the field of leukodystrophies and likewise, the increasingly common alliance of 

these consortiums with patient advocacy groups also bodes well, particularly in regards to 

the need for prioritizing and measuring patient-reported outcomes. Although the rise of 

patient-powered research models has arrived at a welcome time, the heavy burden of 

weighing safety, efficacy, and trial designs at the threshold of translational-to-clinical 

medicine will continue to engage clinical investigators.
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X-ALD X-linked adrenoleukodystrophy

AGS Aicardi-Goutières Syndrome

CSF Cerebrospinal fluid

IFNα α-interferon
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RNA Ribonucleic acid

DNA Deoxyribonucleic acid

SLE systemic lupus erythematosus

AxD Alexander disease

GFAP Growth factor associated protein

MLD Metachromatic leukodystrophy

Pol III Polymerase III

VWM Vanishing white matter disease

CTX cerebrotendinous xanthomatosis

HSCT Hematopoietic stem cell therapy

MRI Magnetic resonance imaging

CNS Central nervous system

PMD Pelizaeus-Merzbacher disease

APBD adult polyglucosan body disease

NAA N-acetyl aspartic acid

AAV2 Adeno-associated virus serotype 2

SAMHD1 SAM domain and HD domain-containing protein 1

LINE1 Long Interspersed Element 1

ABCD2 ATP-binding cassette, sub-family D (ALD), member 2

ABCD1 ATP-binding cassette, sub-family D (ALD), member 1

GALC galactosylceramidase

HBSL hypomyelination with brain stem and spinal cord abnormalities and leg 

spasticity

ERT Enzyme Replacement Therapy

rhASA Recombinant Human Arylsulfatase A

ZSD Zellweger spectrum disorder

PEX peroxisomal

HuCNS-SC Human Central Nervous System Stem Cell

UCSF University of California, San Francisco

DTI Diffusion Tensor Imaging
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Therapy Paper Highlights

• Historically Leukodystrophies have lacked disease specific therapeutic 

approaches or technological cures

• A greater understanding of the pathologic mechanisms has advanced research in 

therapies for specific disorders

• Prompt recognition and early treatment initiation for disorders with specific 

therapies favor a better therapeutic response

• A number of disorders, previously untreatable, are on the verge of pilot or phase 

I/II clinical trials

• Leukodystrophies are a complex group of disorders for which the advancement 

of specific therapies must be prioritized
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Table 1

Examples of symptomatic therapies relevant to specific leukodystrophies

Symptom Associated Disease(s) Prevention/Treatment

Adrenal insufficiency X-ALD Annual ACTH screening; corticosteroids. Rare in X-ALD 
women.

Pathological fracture X-ALD and other non 
ambulatory patients

Calcium and vitamin D supplementation for X-ALD patients 
on corticosteroids. Monitor bone health in all leukodystrophy 
patients with impaired mobility

Inflammatory cerebral demyelination X-ALD Occurs in 40% of ALD boys between 3–12 years. HSCT 
effectively halts demyelination, but only if initiated soon after 
lesion onset. Surveillance MRIs every 6 months can detect 
demyelination at a sufficiently early stage. This phenotype also 
affects 25% of ALD men aged 12–50 years, although comorbid 
symptoms of AMN in adult men can complicate HSCT. 
Phenotype is rare among older men as well as ALD women of 
any age.

Autoimmune manifestations and large 
vessel vasculitis

AGS Patients with AGS have skin manifestations such as chilblains 
requiring specialized wound care. Additionally, 
hypothyroidism hypothesized to have an autoimmune 
mechanism is occasionally seen and TSH should be performed 
yearly to institute appropriate therapy as needed. AGS patients 
may rarely have arthropathy, autoimmune hepatitis or other 
systemic inflammatory features. AGS patients with mutations 
in SAMHD1 may have large vessel intracerebral vasculitis and 
this should be screened with neuroimaging.

Obstructive hydrocephalus AxD AxD patients should be screened and treated for obstructive 
hydrocephalus

Premature ovarian failure VWM, AARS2 related 
leukodystrophy

None known

Episodic deterioration VWM, mitochondrial, Pol III 
and more rarely in other 
leukodystrophies

Avoidance of triggers (e.g. head trauma, fevers, severe fright)

Cardiac dysfunction Mitochondrial Cardiac evaluation; pacemaker/defibrillator may be appropriate 
in some patients. Patients should be re-evaluated at intervals 
according to their needs.

Deafness Mitochondrial and 18q−in 
early stages; many 
leukodystrophies in later 
stages

Auditory evaluation; treatments limited

Hypogonadotropic Hypogonadism, 
growth hormone deficiency

Pol-III Supplemental hormonal therapies

Dental anomalies Pol-III, ODDD, Cockayne Dental care to prevent caries, consultation with an orthodontist 
as necessary. General anesthesia should be employed with 
caution if procedure is non-essential.

Hypercholestanolemia xanthoma 
formation, cataracts, psychomotor 
decline

CTX Daily supplementation with chenodeoxycholic acid normalizes 
cholestanol levels and may prevent and/or improve other 
disease manifestations, statins

Gallbladder dysfunction MLD Patients with MLD can have gallbladder involvement leading 
the feeding intolerance, hematochezia, and pain. This should be 
considered and managed in the symptomatic patient.
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